

© CODESYS Group

CODESYS File-Based Storage 0.9.0.0
Whitepaper

Version: <0.9.0.0“>
Template: templ_tecdoc_de_V3.0.docx
Dateiname: Whitepaper-CODESYS-File-Based Storage-0900.docx

© CODESYS Group

Te
m

pl
at

e:
 t

em
pl

_t
ec

do
c_

de
_V

3.
0.

do
cx

INHALT
Seite

1 What is CODESYS File-Based Storage 3
1.1 Advantages 3
1.2 Disadvantages 3
2 File system layout 3
2.1 Project layout 3
2.2 File layout 4
2.2.1 POUs, DUTs, and GVLs 4
2.2.2 Library Manager 7
2.2.3 Project information 8
2.2.4 Any other objects 9

3 Conversion of existing projects 10
4 Limitations 11
4.1 User Management 11
4.2 Project Archive 11
4.3 Online Change 11
4.4 File system 11
4.5 Validators 11
5 Scripting 12
6 License 12

 3/13 CODESYS File-Based Storage 0.9.0.0
What is CODESYS File-Based Storage

© CODESYS Group

1 What is CODESYS File-Based Storage

CODESYS File-Based Storage (FBS) is a new, alternative, file-based project format. The classic V3 project or
library stores its data within a single compressed file (*.project or *.library). In contrast to this existing format, the
FBS project is stored directly as a folder structure on the disc. Individual files are serialized in a human-readable
format and can be read with any editor.

Using CODESYS File-Based Storage requires at least CODESYS V3.5 SP 20 Patch 4 or higher.

The project root consists of folders with the following extensions:

 "*.fbsproj": for projects
 "*.fbslib": for library-projects

1.1 Advantages
 Human-readable project structure

The project and its content are human-readable on disc and can be edited.
 Simplified project creation

New projects can be set up just by creating a folder structure and the files you need

1.2 Disadvantages
 Increased storage space requirements

Since the context is serialized as plain text, the project requires more disc space than classic V3 files
whose content is binary.

 Increased loading time
Reading a large number of small files takes more time than reading a single large file.

2 File system layout

2.1 Project layout
A standard V3 project gets serialized to the file system as follows. Folders or files with the prefix "." are hidden
and not visible within the CODESYS V3 IDE.

Path Explanation

StandardDemo.fbsproj\ Root folder of the project
root\.auxiliary\ Storage folder for auxiliary files

created by plug-ins
root\.sidecars\ Folder for project-relevant files, like

options, precompile context, ...
root\PLC.device.xml.v3^\ Folder for sub objects of the device
root\PLC.device.xml.v3^\Plc Logic.plclogic.xml.v3^\ Folder for sub objects of the PLC

logic
root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\

Folder for sub objects of the
application

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\ISomeInterfac
e.itf^\

Folder for sub objects of the interface

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\ISomeInterfac
e.itf^\MethodName.meth

Method

 4/13 CODESYS File-Based Storage 0.9.0.0
File system layout

© CODESYS Group

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\PLC_PRG.prg
.st^\

Folder for sub objects of the POU

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\PLC_PRG.prg
.st^\Inch.prop.st

Property in ST

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\Task
Configuration.taskconfig.xml.v3^\

Folder for sub objects of the task
configuration

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\Task
Configuration.taskconfig.xml.v3^\MainTask.task.xml.v3

Task object

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\AbstractFB.fb.
st

Function block in ST

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\CFC.pou.xml

POU in CFC

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\Constants.gvl

Global variable list object

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\ISomeInterfac
e.itf

Interface object

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\Libraries.json

Library Manager

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\PLC_PRG.prg
.st

POU in ST

root\PLC.device.xml.v3^\Plc
Logic.plclogic.xml.v3^\Application.application.xml.v3^\Task
Configuration.taskconfig.xml.v3

Task configuration object

root\PLC.device.xml.v3^\Plc Logic.plclogic.xml.v3 PLC logic object
root\PLC.device.xml.v3 Device object
root\Project Settings.workspace.xml.v3 Workspace object
root\ProjectInfo.json Project Information

In the above table, paths marked with a backslash '\' at the end are folders and therefore not visible in the file
system.

2.2 File layout
Depending on the kind of object and implementation language, the content will be serialized in a new human-
readable format. Currently this is only implemented for objects based on Structured Text (ST) language.

2.2.1 POUs, DUTs, and GVLs
POUs, DUTs, and GVLs are represented by files, as outlined below. "Name" represents the POU name.

"Child" objects (like properties, methods, ...) sit in a folder bearing the name of the parent + "^".

For single language POUs, the language is added as part of a two-part extension.

Name.prg.st Program "Name", written in ST, including declaration
and implementation part

Name.gvl The global variable list "Name"
Name.fb.xml.v3^\PropName.prop.st The property "PropName" of the FB "Name"
Name.fb.xml.v3^\ActionName.action.st The action "ActionName" of the POU "Name" (which

must be CFC/SFC/FBD/LD in this case), written in ST

 5/13 CODESYS File-Based Storage 0.9.0.0
File system layout

© CODESYS Group

Name.fb.xml.v3^\TransName.transition.st The transition "TransName" of the POU "Name" (which
must be CFC/SFC/FBD/LD in this case), written in ST

ISomeInterface.itf Interface declaration
ISomeInterface.itf^\MethodName.meth The method "MethodName" of the interface "ItfName"
SomeEnum.enum Declaration of an ENUM data type
PostalAddress.struct Declaration of a STRUCT data type
SomeUnion.union Declaration of a UNION data type
Temperature.alias Declaration of an IEC ALIAS for another data type

 6/13 CODESYS File-Based Storage 0.9.0.0
File system layout

© CODESYS Group

 7/13 CODESYS File-Based Storage 0.9.0.0
File system layout

© CODESYS Group

2.2.2 Library Manager
Library managers of projects get fixed file names and extensions. Their content will be serialized as JSON.

 8/13 CODESYS File-Based Storage 0.9.0.0
File system layout

© CODESYS Group

2.2.3 Project information
Project information objects get fixed file names and extensions, too. Their content will be serialized as JSON.

 9/13 CODESYS File-Based Storage 0.9.0.0
File system layout

© CODESYS Group

2.2.4 Any other objects
Other objects that do not have a dedicated textual representation yet will be serialized as XML. This format is
also used for the native import/export features.

Changes with CODESYS File-Based Storage 1.0.0.0
Within the next version 1.0.0.0, based on CODESYS V3.5 SP 22, the internal format will change: The
elimination of the current divider (__DECLARATION__, __METADATA__) will reduce the required content.
As a consequence, the files will be smaller and more lightweight.

 10/13 CODESYS File-Based Storage 0.9.0.0
Conversion of existing projects

© CODESYS Group

3 Conversion of existing projects

Existing V3 projects can be converted to a file-based project format. During conversion, a check is performed to
ensure the conversion can be completed without errors.

The following example demonstrates the conversion of a project consisting of two sibling folders with the same
name, that the file system does not support.

Depending on the error that occurs, quick fixes may also be available. For the above case, one of the affected
folders will get a new name.

During conversion, the source project will be closed and reopened as a new file-based project.

The title bar displays the new project extension.

The CODESYS File-Based Storage add-on brings a new set of commands for creating/opening/converting
projects. The functionality of the commands will be improved in the next version.

 11/13 CODESYS File-Based Storage 0.9.0.0
Limitations

© CODESYS Group

4 Limitations

4.1 User Management
Since CODESYS File-Based Storage stores objects in a readable format, we recommend not to use User
Management.

4.2 Project Archive
Creating a project archive on a file-based project does not include the file-based project yet. Instead, a V3
project file will be included into the archive.

4.3 Online Change
A login without online change to an existing, running V3 application with a new file-based project may work, but
cannot be guaranteed.

4.4 File system
CODESYS File-Based Storage uses folders and files to store the objects of the project. This structure results in
file system limitations that are imposed by the operating system and must be observed.

For example NTFS, the default file system of Windows:

 Maximal length of file name: 255 Unicode characters
 Maximal length of path: 32,760 Unicode characters, each path component consisting of a maximum of

255 characters

CODESYS allows to have more than one folder with the same name at the same location in one project. On the
file system, this is not allowed.

External changes
File-Based Storage does not react to external modifications within the file system. After modification, a complete
project reload is required.

4.5 Validators
During conversion of classic V3 projects or during daily work on FBS projects, so-called validators prevent
invalid and inconsistent data and structures. They block the current or undo the last operation and report
warnings/errors during project conversion and loading.

 12/13 CODESYS File-Based Storage 0.9.0.0
Scripting

© CODESYS Group

5 Scripting

Create a file-based project via command:

Open a file-based project via command:

6 License

CODESYS File-Based Storage requires the prior installation of a CODESYS Professional Developer Edition
license.

A license-free read-only mechanism is not implemented. If you wish to share a project with someone who
does not have a license installed, you need to convert the File-Based Storage project back to V3 format
(“File>Save Project as”).

	CODESYS File-Based Storage 0.9.0.0
	1 What is CODESYS File-Based Storage
	1.1 Advantages
	1.2 Disadvantages

	2 File system layout
	2.1 Project layout
	2.2 File layout
	2.2.1 POUs, DUTs, and GVLs
	2.2.2 Library Manager
	2.2.3 Project information
	2.2.4 Any other objects

	3 Conversion of existing projects
	4 Limitations
	4.1 User Management
	4.2 Project Archive
	4.3 Online Change
	4.4 File system
	4.5 Validators

	5 Scripting
	6 License

