
Data Sheet CODESYS Application Composer

The CODESYS Application Composer is a development tool for the efficient creation of

applications consisting of recurring function blocks.

A 30 day demo license is available for testing. For the full version please contact CODESYS

Sales.

Product description

With the CODESYS Application Composer you can customize, i.e. compile and parameterize,

complete control applications from previously created software modules.

Modules are functional program units that can correspond both to machine or system parts as

well as software functions. Along with the program code, modules typically include components

such as visualization elements, parameterization or I/O allocations. With this they cover nearly all

programming aspects that CODESYS offers.

The customization of the modules takes place in the module tree. In the process each entry

corresponds to a module instance. In the insertion of new elements into the module structure

only suitable modules are offered for selection. In the module properties the parameterization,

the I/O configuration and the visualization selection are defined for the module instances.

Simultaneously the configuration of sequencer modules can take place with the help of an easy-

to-use sequence editor. From the module configuration a menu command generates the

complete application code including visualization and I/O configuration. Application-specific code

can be added in the form of extension modules and remains unchanged if the code is generated

again.

With purchasing a functional license you acquire the possibility to create and use new modules

or module declarations within the CODESYS Development System.

The creation of modules takes place in the form of module declarations which can be added as

objects in the POU pool (see Picture 1).

 

1/7



 

Picture 1: Module declaration

Each module declaration requires the specification of a function module (Modul-FB) as a basis,

implementing the program functionalities of the module. Within the module declaration the

module FB can be supplemented by additional properties and associated objects: * Parameters:

Input variables of the module FB can be designated as parameters. Parameters are then

conveniently configured within a parameter module editor (see Picture 2).

 

Picture 2: Parameter editor

Inputs/Outputs: Input and output variables of the module FB can be defined as module

inputs and outputs. Input variables of the module FB can be designated as parameters. The

module inputs/outputs can then be conveniently connected to variables, other module

inputs/outputs or device inputs/outputs (see Picture 3).

• 

Product Data Sheet

2/7



 

Picture 3: I/O editor

Slots: Input variables of the module FB can be designated such that they can accept

instances of other module FBs. For example, if a module is supposed to be usable as a

sub-module beneath another module, a slot is defined in the father module that can accept

the corresponding child modules. The associated input variable is then automatically filled

with the instances of the child module FBs during the generation.

Tasks: If it is a top level module (module without a father module), additional tasks can be

defined that are generated in the generator run and that automatically call specified

methods of the module FB. A top level module for its part then calls methods of its child

module FB.

Visualizations: Each module permits the definition of page and embedded visualizations.

This will be automatically generated with and connected to the module during generation.

Page visualizations are displayed explicitly for one module. Embedded visualizations, on

the other hand, can be embedded in the page visualizations of father modules.

Proxy Module FBs: Modules can define so-called proxy representative FBs of their own

module FBs. A proxy is used to make possible references on a module FB that go beyond

the application and controller boundaries by creating a proxy FB in the respective

application as a representative of the referenced module FB. The communication and data

• 

• 

• 

• 

Product Data Sheet

3/7



exchange between the module FB and its proxy FB below a foreign application is

automatically generated by the Application Composer generators.

Instance-References: With so-called instance references you can define FB instances that

will not be identified until configuration time of the module by the module user with actual

instances. For example device FBs can be referenced in modules as instance references.

Devices and inputs/outputs: Modules can define devices (e.g. fieldbuses) that are inserted

with the module into the device tree. The inputs and outputs of the devices can then be

automatically connected to the inputs and outputs of the module or modules. For the

greatest possible flexibility the devices can also be inserted as so-called “wildcards” which

do not have to be filled with actual device types until the time of generation (see Picture 4).

 

Picture 4: Assignment of module channels to devices

Alarms: Along with visualizations and devices, modules can also use the CODESYS alarm

management in order to generate alarms for variables of their module FBs. These alarms

can be displayed as well as intercepted and evaluated via a call mechanism.

Sequence module designation: If modules in the form of sequences are supposed to be

editable, this can be defined via the module declaration. Parameters, inputs/outputs or

references can be specified which are then displayed directly in the sequence steps.

• 

• 

• 

• 

Product Data Sheet

4/7



Default Submodules: Default assignments and default configurations can be specified for

module slots (see above). In the insertion of the module such a default assignment then fills

the module slot automatically with the predefined module, which can be correspondingly

configured. After the declaration of the modules and the implementation of the associated

module FB, these modules can be inserted into the module tree and configured. In order to

finally obtain a functional IEC application only a generator run has to be performed.

Depending on the selection of generators and configuration, in the generator run the

complete IEC code, visualizations, devices etc. are generated beneath an application. The

entire generated code, or all objects created in the process can be freely viewed and edited

under the device tree.

• 

Product Data Sheet

5/7



General information

Supplier:

CODESYS GmbH

Memminger Strasse 151

87439 Kempten

Germany

Support:

Technical support is not included with this product. To receive technical support, please purchase

a CODESYS Support Ticket.

https://support.codesys.com

Item:

CODESYS Application Composer

Item number:

2101000006

Sales / Source of supply:

CODESYS Store

https://store.codesys.com

Included in delivery:

License key

System requirements and restrictions

Programming System CODESYS Development System 3.5.17.30 or higher

Runtime System CODESYS Control Version 3.5.0.0

Supported Platforms/ Devices Note: Use the project “Device Reader” to find out which

functions are supported by the controller. “Device Reader”

is available for free in the CODESYS Store.

Additional Requirements -

Restrictions -

Licensing Soft Key

(Workplace-bound licensing, free part of all

CODESYS products)

Optional: CODESYS Key

• 

• 

• 

Product Data Sheet

6/7

https://support.codesys.com
https://store.codesys.com


(Increased security against loss of license

keys, transferable licensing to other

workstations)

Required Accessories Optional: CODESYS Key

Note: Not all CODESYS features are available in all territories. For more information on

geographic restrictions, please contact sales@codesys.com.

Note: Technical specifications are subject to change. Errors and omissions excepted. The

content of the current online version of this document applies.

Product Data Sheet

7/7


	Data Sheet CODESYS Application Composer¶
	Product description¶
	General information¶
	System requirements and restrictions¶


