CHAPTER 11 Object Oriented
Industrial Programming

This chapter describes two different interpretations of the term “Object Oriented Programming”, how one
interpretation is a subset of the other, and how the subset provides many of the benefits of object-based
programming without the complexity. This chapter goes on to provide examples of plant objects, how those
objects are used in a control Program, and how this programming technique is a natural and intuitive way to control
plant and equipment objects.

Also, this chapter provides some history on the evolution from traditional PLC programming to object-based
programming, introduces new techniques for mapping /0 and configuring objects in an object-based environment,
describes best-practices for PLC design, and shows how designs can be perfected before being deployed to the field
using system-level simulation.

The lab for this chapter is exploring and simulating several completed discrete, batch, and continuous OOIP designs;
and building your own OOIP design.

OOP vs OOIP

When asked the meaning of
Object Oriented
Programming, the response
tends to be very different

= Object Oriented Programming (OOP)
= Primarily text-based

Utilizes Classes, Inheritance, Overloading, Polymorphism, Interfaces,
Dynamic Binding, Events, etc.

= Typically requires extensive training
= Often considered too complex to be used and maintained by plant technicians Industrial Controls

= Great for well-defined compiled library objects and utilities community (OT) versus
members of the Computer

Science community (IT). To
differentiate the two in this
book, we will refer to the
industrial controls
interpretation as Object
Oriented Industrial

Programming (OOIP) and
The productivity of OOP with the simplicity of traditional PLC programming. define them each as follows:

between members of the

= Object Oriented Industrial Programming (OOIP)
= Primarily graphics-based
= Utilizes Encapsulation, Composition, and Abstraction
= Can be mastered with minimal training and/or OJT
= Embraced by controls engineers and technicians
= Great for Industrial Controls programming

Object Oriented Programming uses the full suite of OOP techniques, is primarily text based, and is primarily the
domain of highly educated computer scientists. Object Oriented Industrial Programming only utilizes
Encapsulation, Composition, and Abstraction, uses these to build systems from self-contained reusable Function
Blocks, is primarily graphics-based, and is usable by controls engineers and plant technicians with minimal training.

212 The Book of CODESYS

Industrial controls software engineering has unique requirements for high reliability and for ease of use by a broad
spectrum of users. Those are the reasons why graphical languages have been the mainstay of industrial controls
programming and industrial controls engineers tend to wait for the latest trends in computer science to mature
before adoption (such as symbolic addressing and data structures which both matured for 20 years before entering
the industrial controls mainstream).

Object Oriented Programming (OOP) began to be used by computer scientists in the 1990s but has been slow to be
adopted into the Industrial Controls world due to its complexity and the lack of a supporting graphical language
environment. Fortunately, tool vendors like CODESYS are beginning to address those issues.

To benefit from Object Oriented Industrial Programming, controls programmers need only master three OOP
concepts: Encapsulation, Composition, and Abstraction. These are all covered in detail in this and the POUs
chapters.

OOIP provides the benefits of OOP but in a way that is familiar to industrial programmers and is maintainable by
industrial programmers. It is the best of both worlds: the productivity of OOP with the simplicity and reliability of
traditional PLC programming.

Object Oriented Programming (OOP) works well for the libraries created by highly trained computer scientists, such
as the libraries created by the programmers at CODESYS. These libraries can then be used by controls engineers
who don’t need to know or understand complexities contained in the library.

Visualization and Alarming also have their versions of OOIP which are discussed in their respective chapters later in
this book.

Chapter Eleven: Object Oriented Industrial Programming

Why OOIP?

213

= Whatis the advantage of OOIP?

Object Oriented
Industrial

= Encourages and simplifies code reuse

Programming

= Encapsulates the functionality inside
the object

(OO0IP) simplifies
the design of your

- There is no need to know or understand
the implementation inside an object. Just use it!

= OOIP is a perfect approach for
industrial controls programming,
as plants and equipment are

Recycle

= Objects are typically created Mv‘i‘zd
by the Libraries Engineer

#1 Prefractionator

= The resulting program is much easier to understand, modify, and maintain” -

=L

themselves Object Oriented A€

plant or equipment
and makes it much

easier and more
likely to reuse
control objects on
future designs.
Your plant or
equipment is made
: of objects (motors,
| o actuators, sensors,
S {/Obiecéxg;ggds etc.); the control
\?_H@_x_ for your plant or
equipment should

Octane Rejects

#2 Prefractionator

by Unknown Author is licensed under

be too!

Just as a motor is a completely self-contained object which does not require assembly or modification, the control

for that motor should be a self-contained object which does not require assembly or modification. In software
terms, this is known as Encapsulation. Everything that is required to control a motor is encapsulated inside the
motor control block. Just drop it into the design and it works. Just as the plant or equipment designer doesn’t need
to be a motor design expert to specify and install a motor, the control designer doesn’t need to be a motor control

expert to configure and use the motor control block.

Reusing control blocks in your control code should be just as easy as reusing physical equipment in your plant.
Physical equipment objects are specified, purchased, and installed — Control objects are placed, wired, and

configured. The thought process is the same, and both can,

in fact, be done in parallel. In the future, equipment

manufacturers may well supply the OOIP control blocks for their equipment along with the physical equipment.

Evolution from Flat Programming

C Code Ladder

q

Sl ’ Read, Scale, Filter Inputs
‘ Perform Input Alarming

LAERERERS)
%@& &&& i

Perform Control ‘
> &
Control Alarming ‘

S

i

o {ellr)

S Perform Output Alarming
P & .
Filter, Scale, Write Outputs

st

BE&H0

A Al\inllﬁml)l{‘mﬂiu\ Ad gL

i
T

In the early days of industrial automation, programming
was flat. We read the inputs, scaled the inputs,
generated alarming on the inputs, performed the
control algorithms to generate outputs, performed
alarming on the outputs, scaled the outputs, and wrote
the outputs using memory mapped I/O. Later when
Functions became available, we consolidated some of
the duplicate code, but the process was still essentially
flat.

214 The Book of CODESYS

Task-Oriented vs Object-Oriented

lder TadkOianted Newer Object-Oriented When control software began to
Programming Style Programming Style accommodate multiple tasks, industrial
£,08. £o08, programmers adopted a centralized
&a3E35 22a0f S83EZ3 .)
SES%8 2225,58392¢8 task-oriented approach. This approach
880809 cots8803%0% L . .
gg8sszt §sE82858SsE divided the operations up into separate
Tt don= rocEafdtdon= g
Input1 nput! ~GEITEE 2 tasks and then a sequence of centralized
Input2 Input2 "Object 1 s
Input3 YR Obicci 8 processes performed each separate
Inputd Inputd Object 1. £ . .
InputN InputN Obiect | 3 operation on the tags in the program.
Process1 Process1 £ . .
Process? Process2 5 The first task would read all the inputs,
ProcessN ProcessN § .
Outputt Outputt £ the next task would scale all the inputs,
QOutput2 Output2 2 .
Output3 Output3 ® the next would perform alarming on the
Output4 Outputd £ i
OutputN OutputN E scaled points, and so on.
Operations are grouped and performed on the All the functionality related to a plant object is ..
VO as a set. Configuration and Data are contained (encapsulated) in the corresponding A central characteristic of the task-
typically stored and operated on in arrays. control object. Each object handles all b d hi b £li d
Significant effort is required to organize and operations associated with that object. asea approacn Is a numbper o ists an
maintain these sets. Expanding the plant is as simple as adding . . .
(ristanliating) addifonal objects, processes which must be maintained.

For instance, in a task-based approach,
the global variable list is added first, then functionality is bolted on in multiple layers growing out from that (such as
scaling, alarming, filtering, logging, retaining, Visualization, etc., etc.). Any modification or addition to the basic
functionality requires modification or updating to all these layers. Great effort and attention to detail is required to
avoid missing a step in that process and introducing latent defects (which, of course, will not show up until the
worst-possible moment).

This centralized task-oriented approach was a big advancement over the flat approach, but it suffered from the
need to modify each list or task when new functionality was added to the program. In addition, task-oriented
programming often made it difficult to see the flow of information and to understand the cause-and-effect
relationships in the control code. These drawbacks made programming more difficult to design and more
complicated for plant technicians to maintain.

OOIP turns the task-oriented process on its side as shown in this graphic. Instead of the functionality being spread
out amongst many tasks, the functionality is contained inside “Objects”. A single object performs everything that is
associated with an input (reading, scaling, filtering, alarming, persistence, etc.), and that single object is reused for
each input. To accommodate another input, simply add and configure another input object. Same with output
objects (such as motors and valves).

In OOIP, since all the control is encapsulated inside the object, all that is necessary to add additional functionality is
to add another self-contained block. No separate lists, processes, global variables to update and maintain (or forget
to update).

The difference between task-based control and object-based control can be compared to different forms of
governments. Task-based control is analogous to a strong centralized government where new functionality must
register with the Federal Bureau of Scaling, and the Federal Bureau of Alarms, and such. Object-based is analogous
to a decentralized government where new functionality is self-supporting and can largely take care of itself.

Since industrial control plants consist of objects (such as: motors, conveyors, valves, and sensors), Object Oriented
Programming is a natural choice for industrial controls — perhaps even more than the computer science
programming for which OOP was originally created! It may have been more natural for OOP to have been invented
in the PLC world and then spread to the IT world, instead of the other way around.

Chapter Eleven: Object Oriented Industrial Programming

Interfaces

Encapsulation and Abstraction

Engine

Could be gas, diesel,
Wankel, electric, turbine,
fusion, or some other.
The interfaces are the
same for any type of
engine. The details are
left to the engine supplier.

Starter %/

o

Armature

Coppe?IWire

T
CopperMines

The details are abstracted to and encapsulated within the level where they are appropriate

215

Encapsulation, Abstraction, and
Interfaces

The object behind Object Oriented Industrial
Computing (OOIP) is to Encapsulate all the
complexity into an object, and to Abstract the
complexity into hierarchical levels where that
complexity is necessary.

Encapsulation allows objects to be created which
contain all the functionality and data necessary to
control its matching plant object. The user does
not need to know or understand the underlying
implementation ... they just use it! A good

analogy is a car engine. The engine encapsulates pistons, valves, bearings, and a multitude of other objects and

complex functionality. The driver doesn’t need to know how an engine works — they only need to understand and
interact with its interfaces: the start button and the accelerator pedal.

Abstraction is where detail is grouped by level in a hierarchy so that the programmer only needs to deal with the
relevant level of complexity at any one level of the design. Composition is where Objects instantiate other Objects
to build and logically partition large hierarchical systems. Interfaces provide a standardized means of interacting

with the next level in the hierarchy. In the Mustang analogy from the previous chapter, the Mustang has an engine,
which has a starter, which has an armature, which has copper wire, which is mined and refined at certain locations

around the world as shown in this graphic. Abstraction allows you to leave the nested complexity of the engine and
the mining of its copper to others where that level of detail is appropriate for their level in the hierarchy. You only
need to know the Interfaces to engine — the ignition switch and the gas pedal.

Analoglnput .
. — Sample Analog Input Object
Clamp 5
= et) This graphic shows an example of
nearScalingParameters Type. TnHigh |- (ClampEnable
Inlow - .
usioh P Analog Input object (courtesy of
ClampEnable_CI__} . .
Coherent Technologies). This block
Lm« encapsulates all the complexity of an
IN AVG
% Analog Input including scaling, clamping,
MovingAvgRST_CI RST 5 § — @) . . .
] 2058 | i o Y filtering, override, rate-of-change
oCutiofValue_CT oV verRide_VI
Draisene it alarming, and high/low alarming. The
programmer is only concerned with the
“nrRDCNarm) . . .
- PoOCHAM FoROC o configuration of the block (the inputs on
ROC lope_CI lope. NegROCAlarm NegROC_Alarm_VO
RO, the left ending in _Cl) and connecting
ot the outputs (Output_PO and
—tgnon SmoothedOutput_PO). The
P oS i ' Bl rogrammer doesn’t need to
[}
R understand or be concerned with the
= o= ' (o] underlying complexity. Just drop it in
s Cl |
and use it ... just like the engine in a car.
: | An example of this Analog Input object
R in actual use appears in the lower left
e o ‘ Tontirn 10 side of the design on the next page.
Lowl. C_}

216 The Book of CODESYS

Analog Input Object used in Plant Design

Object Oriented Industrial Programming

Mixing Tank Plant Design

N2
0 L . Objects in the Control design parallel the objects
M. x A in the physical Plant or Equipment design

Mixing Tank Control Design

MotorRev
I (Command_PI Running_PO
= Direction_Pl
Control "
PumpRunning PumpRun
Mi PumpDir VFD
V2.0Opened_PO PumpOutletValveOpened MixerHardwireEnable HardwireEnable_P| ActualSpeed_PO
V2.Closed_PO PumpOutletValveClosed MixerRunF: RunFwd_PI
V1.Opened_PO N1ToPumpValveOpened MixerRunR RunRev_PI
V1.Closed_PO IN1ToPumpValveClosed M Speed_PI
HorsePower MixerR: Reset_PI
F gl N1ToPumpValve
FluidTe PumpOutl
PumpOutletPressure ManualOp
M: I0pCompleted M:
ManualTimeLim

Image courtesy of

Coherent Technologies, Inc ManualOp -
Human
ManualOperation_PI Completed_PO

_Pl
TimeLimit_PI

= |fyou understand the plant, you will understand the control

Control Objects can be designed to correspond to the objects in the plant in such a way that the control program
begins to look similar to the physical plant design as shown in this graphic. Notice the one-to-one correspondence
between the physical objects and the Control Objects.

The plant has four physical sensors for level, horsepower, temperature, and pressure — the control has four
Analoglnput objects matching those four sensors. The plant has two motors and two valves — the control has two
motor objects (MotorRev and VFD) and two Valve objects (and a Human object, which is explained later).

Due to this one-to-one correspondence, the plant design tool and the control design tool might one day be one-in-
the-same. And suppliers of equipment might also provide the control block for that piece of equipment. It will
become just as easy to configure and use an equipment control block as it is to specify and purchase a physical
piece of equipment.

Notice this design has a “Human” object (lower-right corner). In this case, the plant had a human operation
(dumping a bag of chemical into the mixer). In the control design, the human plant object is treated just like any
other plant object. In this case, when the recipe calls for the chemical to be added, the control toggles the
ManualOperation_Pl input, and the Human control object signals the operator through the HMI. When the human
is done, he/she responds to the HMI, which triggers the “Completed_PO” output which signals the control code to
continue to the next step.

Chapter Eleven: Object Oriented Industrial Programming 217

Object of Objects
= This Plant Object can itself become a self-contained block inside a Again, the object of
larger plant: Tres ok Piart OOIP is to build
—— N N completely self-
ThreeTankPlant o]
= X0\ | ' X0\ | lH=m X0 .
\| PROGRAM ThreeTankPlant C— 9 O%[o t— 9 E g /oio contained and self-
= 2 v whiioks ol Sl < . . .
| MixTankl, MixTank2, MixTank3: Mixingrank;l =) P S © 5 MG O =0 e J© reliant ObjeCtS which
4 MasterControll: MasterControl; L= = | .
END VAR — é can be used without any
= * Notice, the controlis | 3dditional programming
distributed. Each h dding i
level of the hierarchy (such as adding its
e Filled——> Filledi handles everything it variables to a global
MasterControl 1 C Mix Mn.ted ~ gnxe:;m 5.\ can on that level . X X
peteGas e Explied |——HEnD ; . variable list, or adding
Enoy1 — * Config inputs can be | its alarms to analarm
e o e : atided irthe tariis manager, or adding its
Empty2 Empty Emtied — S Eimpi 1 are not all identical . .
Fill3 persistent variables to
Mix3 .
Empty3 Ly : == the Persistence
Mixed Manager, etc.). Add the
Empty Emptied
= block into the design,
Double-Click = .
connect its Program

input and Program output pins, configure its parameters, and use it.

The beauty of this approach of encapsulating all the functionality in an object, is that the object can then itself be
used as a self-contained and self-reliant building block. This is illustrated in this graphic where the mixer Program in
the previous page is converted into a reusable object and then used to make a three-mixer plant. If the individual
mixing tanks are not identical, then configuration inputs are added to modify the behavior of instance to
accommodate those differences.

This is somewhat analogous to building a high-rise building. The single mixing tank is the first floor. It represents a
firm foundation onto which to build the next floor — the three-mixer plant. This then could become the firm
foundation on which to build the next level of the plant. In this way a plant of any complexity can be built just like a
high-rise of any number of floors can be built as long as the floors below are properly designed. Since each object is
self-contained and self-reliant, the complexity remains constant as the Program grows, instead of growing
exponentially as with traditional PLC programming.

Let's use a motor controller as another example. Since the motor controller is totally self-contained, we drop it into
the design, wire up its “Run” Program input to whatever control tells the motor to run, configure its parameters
(including mapping its physical 1/0), and we are done. Since the motor controller is totally self-contained and self-
reliant, it handles all its own alarming, restarting, and such. In many cases, the level that uses the motor controller
doesn’t even need to know if the motor actually started. That level just tells the motor to Run and that’s it.
Everything is handled internally.

That is, unless the next level up needs to know if the motor is responding, as would be the case if the system had a
redundant motor. However, in that scenario, the additional functionality would be abstracted away into an
additional layer of hierarchy. A new RedundantMotor Function Block would be created which instantiates two or
more Motor blocks along with the control logic to start a redundant motor if the current motor fails. Thus, the level
that instantiates the RedundantMotor doesn’t need to know or care what is happening inside the RedundantMotor
level. It just tells the RedundantMotor to run, and it is confident that the RedundantMotor will do what is
necessary to keep a motor running. The RedundantMotor is totally self-contained and totally self-reliant.

Are you beginning to see the beauty of Object Oriented Industrial Programming?

218 The Book of CODESYS

Example of Object Oriented Plant Hierarchy

System Level Block Diagrams crc)

e ‘ oo ——— W]

=

Pant View
E1 — c1

ElevatorModue ConveyorModule E]

X Syncin SyncO: I SyncOut}

15y
[El.Elevator_SeqInConvStatus |- [CiConveyor_Seq Status
E1.Elevator_Seq ElevatorStatus .

_
T
WaitzOffload

[c:izwm:yu_&qsmiymm
ey R E=E | B Sequential
@—’F@r E}W—ﬁw = == | Control src)
= — = sl

=== | Control and

=3I | Equipment

‘ (CFC)
(]

Di i o Motor
B | |—— | Controller
. Input s H==.)

This graphic shows another example of an Object Oriented Industrial Design. The foundation of this high-rise
building is a Discrete Input module (proximity switches), and Motor Controllers. A control block is added to
complete this Elevator module which is the foundation for the next level of the high-rise, which consists of this
Elevator module plus three Conveyor modules and two Offloader modules. This container handler system could
then itself be used as a foundation for a bigger plant, and so on and so forth. Again, since everything is self-
contained and self-reliant, designs do not get bogged down with greater and greater complexity as the design
grows. The complexity is addressed at each level, so there is no limit to the number of levels that can be built.

Again, with OOIP just drop in the objects, wire them up, configure them, and be done. There is no secondary work
required such as adding the object’s tags to an Alarm Manager, or a Persistence Manager, or global variable lists, or
scaling lists, or filtering lists. Just drop it in and use it. Need another one? Just drop in a second one and use it.
Need 100? Just drop them in and use them. Getting the idea yet?

This approach was not necessary when PLC programs were small (a split-level ranch). But, as the power of PLCs
grows and the application for PLCs become more complex and demanding, OOIP provides a way to manage that
complexity to allow unlimited growth (a 200-story skyscraper).

Each of the levels of this design are explained in more detail on the next several pages.

Chapter Eleven: Object Oriented Industrial Programming 219

The Plant View

The CFC “Plant View” is the top-level of your design

" M ade u p Of convey?rsys‘::xm\u ConveyorSystem -
FunCtlon BIOCkS i - ConvliReady4Product: BOOL; D‘
a nd I nte rcon nects - f,::vmeadyw:cduct: BOOL;
representlng the i : m_éfl,mzz, C3 : ConveyorModule; :
structureof your || & et crtesssmsmonne:
plant S]
I = v 5
= [Double-click]on .
a ny bIOCk to Elevaaﬂodk C Convei;ﬂoﬂk q JWE
show the Tj-:'v_sﬂ,“—“‘l oo [omssssme T | |
un d e rlyl n g co nt rol I E} E:Zf:&ﬁ gl:‘vca;:rvssn:::; C
code and status.
C3 = OoM7 ~ oM
ConveyorModule '— OffLoadingModule '— OffloadingModule '—
Syncin SyncOut| Syncin SyncOut Syncin
[C3.Conveyor_Seq.Status - l OM7.OffLoading_Seq.Status - | (OM8.OffLoading_Seq.Status |
R|+/Q] | 100% &

Hint: Look in the Task Manager to find the top-level Plant View

This graphic details the top-level of the material handling system described on the previous page. This is a block-
diagram of the plant. (Or this could be a block diagram of a section of the plant, since each level can stand on its
own —there is no way to know (except in CODESYS the top-level is a Program and all other levels are Function
Blocks.))

This level of the plant consists of an Elevator, three Conveyors, and two Offloaders. Each of these are completely
self-contained, self-reliant objects. Notice that the CFC toolbox “Input” items are used as a way of showing the
internal status of these modules at this level (these are not part of the module; they are CFC Inputs that are butted
up against the module’s box). Notice these use relative path names to reach down in and grab variables further
down in the hierarchy. Also note that these objects are declared as VAR_INPUT. Declaring these instances in this
way allows the simulator to access to the internal variables of the instance that would otherwise not be accessible
from this level (Note 1).

Because this is CFC, the underlying Function Block can be opened by double-clicking on the box. When online, the
underlying instance can also be opened by double-clicking on the box. This will open the editor for that particular
instance showing the values of the variables for that particular instance.

Notice that physical I/O has yet to be mentioned in this book. In fact, it won’t be mentioned for several more
chapters. Intraditional PLC programming, the effort begins with the I/O tag list and proceeds from there. In OOIP
programming, the effort begins by determining and assembling the required functionality. Mapping the physical
I/0 into that functionality is one of the last steps. In that way, when similar functionality is required in a different
plant or piece of equipment, it’s a simple matter to update the mapping with the new I/0. No rewriting the global
variable list and all the task-based services on which it relies. Reusability is maximized.

Note 1: At one time this syntax could be used to access variables in instances that are declared VAR:
(ADR (E1.Elevator Seq.InConvStatus))”

Unfortunately, that wasn’t working as of SP16.

220

The Book of CODESYS

Input Equipment Control
oy

Control and Equipment

OutputESUlpment View (C&E)

'e N\

ElevatorModule

Double-clicking on the

o =

Contral and Equipment V
ElevioadPX
Di2Stale -
Out Elevator_Seq =
Elevator_Sequence -
ElevUpPX ~{System_Run InConvStatus [~
DIZState ﬂ ElevatorloadedPE ElevatorStatus [~
t

ElevatorModule block opens the
editor for the next level of the
design — the Elevator’s Control and

2

Reauesting|—

Syncin Request

| Equipment Diagram (C&E). A C&E

¥
2

ElevDownl E
DI2: =
O

Syncin.Transfer

SyncOut Transfer

consists of Input objects on the left

PusherExtend®X ()
Di2State
Outf

PusherRetractPX
Di2State
Ouff

ProductPE
Di2State -
Out

(Two-state Discrete Inputs)

—— (proximity sensors, in this case),

o S Output objects on the right (motor
controllers, in this case), and a

Control Block in the middle.

Motor_Alarm
Energize_Starter

Notice that the outputs of the
input objects drive the inputs to

(See next slides)

[+ m%i@f‘

the control block (the

ElevLoadPX.OUT output drives the Elevator_Seq.ElevatorLoadedPE input). And similarly, the control block outputs
drive the inputs to the output objects (the Elevator_Seq.Pusher_On output drives the

PusherMotor.Start_Command input).

Elevator_Sequence

Each of these objects are totally self-contained.
Physical I/O is mapped to these Input and
Output objects as the very last step in the design

process. This is covered in the I/O chapter.

PusherToH ...

LifterToHome.

Control View

n-.J‘: PusherRetractedPX

+ ElevatorDownPX

Lr‘usnemome
E

LifterHome
E

Double-clicking on the Control block opens the
SFC editor showing how the Elevator module is

= PusherExtendedPX

ElevatorHome

= ElevatorLoadedPE and notEndOfConvPE

controlled. Since this is a discrete sequential
process, SFC is the best language for this job.
The outputs of the proximity switches drive the

= Not EndOfConvPE
b OutConvidie

Transitions, and the assignments in the Entry
Actions drive the motor controller inputs.

R[+Q) [wo% & -

Motor View
Going back to the C&E and double-clicking on an

FVNR_Motor shows the design of the motor controller.
Since this is completely discrete logic consisting of timers
and relays, it makes sense to build this in LD. However,
this does have seal-in contacts, so it is actually a State

Machine and perhaps would be better built in SFC.

The physical I/0 will be mapped to Starter_Aux and
Energize_Starter (its coil is on a lower rung that isn’t
visible in this screen shot). These will be mapped as

described in the 1/0O chapter. (Unfortunately, this design

was created without using the naming convention described on the next page. It would have been much clearer if
those had been named Starter_Aux_Fl and Energize_Starter_FO.)

Chapter Eleven: Object Oriented Industrial Programming

Variable Naming Convention

= Often similar variables names are required for different purposes.
Suffixes can help keep the purpose straight and avoid errors

= Fl :Field Input _FO : Field Output.

= Pl : Program Input _PO : Program Output.

= VI : Visualization (HMI) Input _VO : Visualization (HMI) Output

= Cl:Config Input [- ' - =

ScaleLinear = Clamp

putFl_ | nput P pex Clamped VO _‘——
PumpOutietPressure m ScaingParameters G |—y— ScaloParams. ClampLevelHigh Output!: Output PO
Analoglnput — ClampLevelLow

ISA_Name Output_PO {LinearScalingParametersType ClampEnable
ISA_Description SmoothedOutput PO
HMI_Config VO PosROC_Alarm VO
NegROC_Alarm VO
HighHighAlarm VO
HighAlarm VO
LowAlarm VO
LowLowAlarm VO
Clamped_VO

InLow.
OutHigh ———
OutLow

ClampEnable_CI

vvvvvvvvvvvv

(P o o

L N AVGH
MovingAvgHold Gl |—QE
MovingAvgTaps CI N
MovingAvgRST_CI RST &
ZeroCutoff b
input ZeroCutOft Input |

_Cl [———{OverRide_VI
OverRide VI —{input. Vi
OverRideinput VI }

OverRideREALMethod — =
#l Output! SmoothedOwpuL PO

ROCAlam -
ROCAlarmSampled =

qinp! PosROC_Alarm VO o
ROCMaxPosSiope CI | MaxPosSlope NegROCAlam NegROC_Alam_VO
ci

8]
gTaps_CI ROCNegHystoresis i NogHystaresis
[MovingAvgRST_CI o T p
MovingAvgHold_CI ROCConsecutiveHoldoff_Cl } Consecutivel Holdoff
ROCAlarm Suppress_FI
HighHighAlarm
Highalarm HighHighalam

veiam -
Analoginput Alarm HighHighAlarm VO

LowLowAlarm

T O 0 O S0 O 0 O A A L 0 O 0 Ol S 3 S 0 O By A 1 O L

LowAlarm &
MovingAverage - NG e

221

In OOIP (and
programming
in general),
Function Block
VAR_INPUTS
and
VAR_OUTPUTSs
are connected
to several
different types
of sources and
destinations.
Sometimes it
become
confusing
exactly which
I/O is intended
for which
source or
destination. A

naming convention is extremely helpful to address this issue. This author prefers this naming convention for

VAR_INPUTs and VAR_OUTPUTSs:

- *__Fland *._FO: for physical inputs from field devices and outputs to field devices.

- * Pland *_PO: these are the interconnections within the program. _POs from one block typically connect to

the *_Pls of the next, and vice versa.
- * Vland *_VO: primarily intended for connections to the Visualization or HMI.

- *_Cl: Configuration Inputs for adjusting the behavior of the object to meet the requirements of the
application. These are usually initialized with one of the techniques described in the POUs chapter.

Where * represents the normal descriptive variable name.

Note: Some users prefer to place the naming convention in front of the variable so when IntelliSense or Input Assist
display variable names in alphabetical order, the variables are ordered by intended type of source or destination.

Using this or a similar naming convention makes it much easier to find the correct variable and much less likely to
use the wrong variable. For instance, when mapping the Analog Input object to the physical analog sensor in this
example, one would look for a variable ending in _FI (Input_Fl in this case). Or, when looking for a tag for the

Visualization to indicate that an input is out of range, one would look for a variable ending in VO (Clamped_VO in
this case). Or, when looking to connect the analog output to the next programming object that needs that signal,

look for a variable ending in _PO (Output_PO or SmoothedOutput_PO in this case).

That having been said, there are exceptions to every rule. For instance, perhaps there is a reason the program
needs to know if the input was out of range, so it would be necessary to use Clamped_VO as a program output.
Exceptions can and will occur, but this covers the vast majority of cases and clears up the vast majority of possible

errors and confusion.

222 The Book of CODESYS

Hierarchical vs Flat Design — Best Practice

= Large, multi-page Functions or Function Blocks are difficult to understand, This author finds it far
debug, and qualify better to build a large

= Notice the Analog Input FB and all the Function Blocks in the previous slides design from a hierarchical
are One Page (sometimes two with ancillary code on 2" page). arrangement of small and

* When code begins to exceed one page, think about moving (aka abstracting manageable blocks, than
away) code details into logical Function Blocks, and then replacing the page of to build one large flat

code details with a page of function blocks.

s : +| design. A well-designed
= Maintain equal levels of detail | -.. o= = . . hierarchical design

at each level of the hierarchy |~ o =

: o consisting of logically
e | 5) . . partitioned blocks is

i e much easier to

= understand, debug, and
— . s || validate than one large
- — - flat design. This author
it i e | typically limits the size of

i:;f’,, a building block to one
page (or two pages with

the ancillary code relegated to page 2).

As we discussed in the Abstraction graphic earlier, try to partition your design into Function Blocks that have the
level of detail that is appropriate for that position in the hierarchy. Just like the engine, the top-level is made up of
the major components (alternator, starter, block, etc.). The next level down would be the pistons, cam shaft, etc.
Continuing down the pistons would be the rings. Partition your control designs in exactly the same way. The
engineer taking over your code will greatly appreciate it (as will you in two years if your memory is as bad as this
author’s). At every level, think what is important to the future user of this code to understand at this level of the
design. If it has more detail than is necessary at that level, move the functionality into a Function Block with a
descriptive name, and replace the code with that Function Block instance.

As a point of illustration as to why the concept of small building block and consistent level-of-detail is important,
one only needs to open a typical Ladder Logic design. Most LD design consists of dozens or hundreds of pages of
flat code, intermingling detailed design with high-level calls to other Function Blocks. This violates both the one-
page building-block rule and the separation-of-detail rule. It is much better to partition the design into multiple
layers, with the higher levels showing the overall functionality and interrelationships (the Block Diagram), and lower
levels showing the detailed implementation.

Other areas that could be argued violate the separation-of-detail rule are Hungarian notation and namespace
prefixes. Typically, the data type of a variable is only important when it is being declared. Some would argue that
prefixing the variable with its data type introduces unnecessary clutter to the code which makes the code more
difficult to read and understand. That detail is better left to a tooltip. Likewise, the library from which an object is
obtained is again usually only important when the object is being chosen. Prefixing the object with its library of
origin usually represents unnecessary clutter which makes the code difficult to read and understand. IEC 61131-3
and CODESYS desperately need a way to open namespaces for each POU so the library of origin can be handled in
the declaration area where that level of detail is important, not in every line of code where an element of the
library is used.

This concept will be revisited several times over the next few chapters (along with additional suggestions where
CODESYS could enhance the IDE help their customers use these best practices).

Chapter Eleven: Object Oriented Industrial Programming 223

|0 and Configuration Mapping in OOIP

= Itis impossible to “hard code” global variables onto objects that are re- To fully realize the reusability benefit of OOIP, I/O
used. mapping, and Parameters cannot be hard-coded into

= Object re-use is a central tenet of structured object-oriented the instantiation of any Object as they are in older

programming
o) _ programming techniques. This will be illustrated on
= For these reasons, it is necessary to map your I/O directly to your object

instances using full path names. The traditional flat/global dating back the next several pages.
to the 1970s is not compatible with Object-oriented programming
techniques.

= Likewise, it is necessary to use similar techniques to write unique
configuration parameters to individual instances of objects.

= See the next slides for an example ...

Hard-Coded Configuration and I/0 Mapping

This figure shows how Abstraction,
Composition, and Interfaces can be
used to build a hierarchical process
plant. Atthe top level, the Plant
Program instantiates two Reactor
objects, each of which have

Plant
R1
Reactor

R2
1

Reactor (R1)

Al

1
Cs1

g
ControlSystem Speed_PI Pulse_PO—
— SPeea1_po
Pulse2_PI Speed2_PO Auger

Speed_PI Pulse_PO

Hard Coded X
. Auger RIAY . X abstracted away the complexity of
I/0 and Config . .
. e two Auger objects which themselves
preclude - - - . .
reusability set instantiate Motor and Shaft Encoder
EE— e objects. The Shaft Encoder and Motor
A1 and A2 objects encapsulate all the
will be connected Auger (R1.A2)] functionality required to receive
to the same |I/O and vsut
VarSpdMtor pulses from the shaft encoder and
have the same Shesd Pl Spoed_Pi Spoed_FO
configuration sei a control the motor.
< ShaftEncoder n
[SlotiPin1 \{Pulse_FI Pulse_PO .
1000 |PuisoPertitr ci Thanks to Abstraction, our only

concern at any one level of the
hierarchy are the interfaces to the next level. For instance, the Variable Speed Motor in the Auger has an interface
to set the speed of the motor. At the Auger level, we have no need to know or deal with any of the underlying
complexity of the motor, such as determining if the motor is responding or generating alarms. The Variable Speed
Motor is self-contained and self-reliant and takes care of its own error conditions and alarming.

Unfortunately, the traditional technique of hard-coding I/O and configurations is fundamentally incompatible with
OOIP. Forinstance, in this example we have a Plant which has two Reactors, each of which have two Augers, all
four of which have Shaft-Encoder interfaces which need a physical discrete input for the pulses from the physical
shaft encoder (Pulse_Fl) and four configurations for the amount of material that is moved per pulse of the shaft-
encoder (PulsePerLiter_Cl). If the physical input of the Auger were hard-coded to a global variable, all four augurs
would be hard coded to that single input. The Auger is not reusable. Same problem with the configuration. If that
is hard coded, then the Augur could only be used with augers of the same diameter, pitch, and encoder. The only
solution would be to make four copies of the Auger, hard code the I/O global variable and the configuration into
each of the four copies, make two copies of the Reactor and hard code two each of the Augers into each copy, and
hard code those two Reactor variations into the Plant. This is a laborious process, duplicate code is rampant,
nothing is reusable, and there are huge opportunities to introduce errors in the code.

224 The Book of CODESYS

Earlier, we drew the analogy that the older task-based approach is like a centralized government, where the newer
object-based approach is a society where individuals take care of themselves. Now, you might be thinking: “Even
the most ardent libertarian agrees there is a need for some level of government.” and “Not all 1964 Ford Mustangs
are identical. They have different features and options. How are these handled in OOIP?” and “How does global
I/0 memory work with OOIP?” These are all very good questions. The first issue is addressed with Central Services,
the second with Configuration Parameters, and the third with Full-Path I/O Mapping as described below.

Object Oriented Configuration and I/O Mapping

CODESYS addresses the 1/0
mapping with a remarkable feature
they designed into the I/O
mapping tool. In traditional

Plant

R1
Reactor

R2
1

Reactor (R1)

Full Path programming, a global variable
Mapping and Config | would be placed in the I/0 map,
enable reusability Auger R1.A1) and then that global variable

would be hard-coded into the
program where it is used. With
OOIP, instead of mappingto a
global variable, the 1/0O is mapped
directly to the applicable pin on
the instance of the object which
uses that physical I/0 using full-
path-name. A Full Path Name is
the dot-separated combination of
the Program name, followed by all

1
VarSpdMotor a
Speed_PI Speed_PI Speed_FO

Va'i;b'e I/0 Mapping

“9| App.Plant.R 1.A1.5E1.Pulse_FI
*$| App.Plant.R 1.A2,5E1.Pulse_FI
*p App.Plant.R2.A1.5E1.Pulse_FI
*p App.Plant.R2.A2.SE1.Pulse_FI

Pulse_PO

‘ Auger (R1.A2)
ConfigFile.csv o

A B | VarSpdMotor
1 TYPE: ShaftEncoder PulsePerLiter_Cl | SpeediBl Speed Bl Speed FO
2 App.Plant.R1.A1.SE1 1000 i
3 App.Plant.R1.A2.SE1 2000 :
4 App.Plant.R2.ALSE1 3000 |
5 App.Plant.R2.A2.SE1 4000 |

Pulse_PO

the intervening instance names, and ending with the variable name.

In this example, the first discrete /0 point is mapped to the PULSE_FI input in ShaftEncoder SE1, in Auger Al, in
Reactor R1, in the Plant Program, in the App Application. So, its full-path-name is App.Plant.R1.A1.SE1.Pulse_FlI.
The second discrete input is connected to the second auger, so its full path name is App.Plant.R1.A2.SE1.Pulse_FI.
The third and fourth discrete inputs are mapped to the same augers except in the second reactor (R2). Because of
this I/O mapping technique, the Auger is now reusable. Notice, the naming convention (*_Fl) to make it easier to
determine where to connect the physical 1/0.

Unfortunately, CODESYS doesn’t offer something similar for setting configurations. Fortunately, ControlSphere has
created the Central Configuration and Persistence Service library (CCS) to address this issue. The CCS library
automatically creates a spreadsheet which is organized by FB type and has a row for each FB instance and a column
for each configuration input for that FB. The CCS library creates this CSV file containing the default values for the
configuration inputs. These values may be changed and the CSV file read back in to apply those changes.

In this example, each Shaft Encoder needs to know the number of pulses per liter of material. The CCS library
writes a CSV file which is grouped by Function Block type (ShaftEncoder), a header-line showing the names of all the
configurable inputs to the ShaftEncoder (PulsePerLiter_Cl), a row containing a full-path-name to each Shaft Encoder
instance (App.Plant.R1.A1.SE1, etc.), and the default values for each configurable input in each instance of the
ShaftEncoder. The user can then change the default values to that which is appropriate for each instance (1000,
2000, 3000, and 4000 in this example). Then, the CSV file can then be read by the controller and the new values

Chapter Eleven: Object Oriented Industrial Programming 225

will be copied in their appropriate variables. This read operation can be performed automatically on startup, or can
be commanded by the control or HMI code.

If the Application includes Visualization which allows the operator to set configurations, that Visualization page
would change the configuration variable values and then write the CSV file so those changes become permanent
(will survive a power-cycle, equipment replacement, or even movement to a new plant or piece of equipment).

The OOP chapter will show how additional OOP techniques are used to implement CCS library.

Sample of an Actual Configuration/Persistence CSV File

A B C D E F G H | J
48 |TYPE:CalcCylOilLoadsFB ISA_Name_CI Borelnch Rodinch SPARE GasRatio InitialGas MaxOperf CalibratedPositionFromF
49 |BOATCYLINDERS.GENOASTAYSAIL.CALCCYLOILLOADS Genoa Stay Sail 1.75 0.5 SPARE 10 5 500 250
50 |[BOATCYLINDERS.HEADSTAY.CALCCYLOILLOADS Head Stay 3.125 0.875 SPARE 10 1.00E-06 500 125
51 |BOATCYLINDERS.JIBCUNNINGHAM.CALCCYLOILLOADS Jib Cunningham 2.188 0.625 SPARE 10 S 500 200
52 |BOATCYLINDERS.JIBINOUT.CALCCYLOILLOADS Jib In Out 175 0.5 SPARE 10) 500 200
53 |BOATCYLINDERS.JIBUPDOWN.CALCCYLOILLOADS Jib Up Down 1.75 0.5 SPARE 10 5 500 250
54 |BOATCYLINDERS.LOWERDEFLECTOR.CALCCYLOILLOADS Lower Deflector 1.75 0.5 SPARE 10 5 500 275
55 |BOATCYLINDERS.MAINCUNNINGHAM.CALCCYLOILLOADS Main Cunningham 1.125 0.375 SPARE 10 5 500 200
56 | BOATCYLINDERS.OUTHAUL.CALCCYLOILLOADS Out Haul 1.5 0.438 SPARE 10 5 500 125
57 |BOATCYLINDERS.SPARE.CALCCYLOILLOADS Spare 1.75 0.5 SPARE 10 5 500 250
58 |BOATCYLINDERS.UPPERDEFLECTOR.CALCCYLOILLOADS Upper Deflector 2.75 0.813 SPARE 10 5 500 275
59 |BOATCYLINDERS.VANG.CALCCYLOILLOADS Vang 2.375 1.25 SPARE 10 5 500 232.5
60
61 | TYPE:HydraulicPumpControlFB Title EngineMinRPM EngineRPI EngineMa PartyMod RPMtoLPA PowerShi: PowerShi: MaxPowe Min
62 | BOATHYDRAULICPUMPCONTROL Hydraulic Pump Cot 500 300 2900 8 10 1800 T#3s 55
63
64 | TYPE:KeelCylinderSystem Title DownPosition UpPositio PositionT¢DownPres UpPressut UpStopDe DnStopDe StuckTime Oill
65 |BOATCYLINDERS.KEEL Keel 85.70625 1.04375 3 50 275 10000 3000 30000
66
67 | TYPE:KiteRetrieverSystem Title Disable Pretensio Pretensio MinFlowC RaceMaxF CruiseMa: RaceMaxF CruiseMa: Min
68 |[BOATWINCHES.KITERETRIEVER Kite Retriever FALSE 425 125 350 700 700 700 700
69
70 | TYPE:SADECylinderSystemFB Title Disable DoubleCli DoubleCli OiluserCl: ExtendPo: RetractPo CylParams_Cl.Stroke
71 |BOATCYLINDERS.GENOASTAYSAIL Genoa Stay Sail FALSE 1 T#400ms 2 0 1000 500
72 |BOATCYLINDERS.HEADSTAY Head Stay FALSE 1 T#400ms 2 0 1000 250
73 |BOATCYLINDERS.JIBCUNNINGHAM Jib Cunningham FALSE 1 T#400ms 2 0 1000 400
74 |BOATCYLINDERS.JIBINOUT Jib In Out FALSE 1 T#400ms 2 0 1000 400
75 |BOATCYLINDERS.JIBUPDOWN Jib Up Down FALSE 1 T#400ms 2 0 1000 500

Example courtesy of Marine Hydraulics Consultancy, Poulsboro, WA

Here is an example of a real configuration file compliments of Marine Hydraulics. Notice the CSV file is grouped by
FB type (CalcCylOllOLoads, PumpControlFB, KiteRetieverSystem, SADECylinderSystemsFB, etc.). Notice within each
group there is a row for each instance of that FB. Also, notice there is a header row at the beginning of each
section containing the names of each of the configuration inputs, with the values of each configuration parameter
for each instance in cells below the header.

Marine Hydraulics has a mixture of configurations that are fixed for each boat, and some configurations which can
be changed by the operator through a Visualization. The programmer codes the boat-specific configurations into
the CSV file which is read on startup. The Visualization writes the configuration file after it makes any changes to
the operator-configurations so that those changes become permanent.

This shows the Power of Object Oriented Industrial Programming. Declare instance of your reusable Function
Blocks, create a Configuration CSV file with all the default values, update those values as appropriate, read the file
back into the project, and start your plant or equipment.

226 The Book of CODESYS

|/O Mapping as a Configuration

Taking this concept one step further —
if one thinks about it, the 1/O mapping
is just another configuration. Itis

something of interest to each instance

= |/O s just another Configuration, just like PulsePerLiter_CI

= |/O can be configured the same way
In the same CSV File or SQL database

= Goto

Auger (R1.A1)

VSM1

» == and should be configured along with all
Configurable |/O Mapping Tl e s g &
peed_| peed_| peed_| . . .
the other configuration inputs for that
SE1 2 . . .
- ShaftEncoder D instance. It's just another columnin
ConfigFile.csv —— Pulse_Fi Puise_PO _ _
e the configuration spreadsheet (maybe
A @ . . .
1 TYPE: ShaftEncoder PulsePefLiter_Cl Pulse_FI Auger (R1 A2) two COIumns If the I/O Itself IS
2 App.Plant.R1.A1.SE1 IlOOO' Slot1.BitOf+— - Conﬁgu rable’ ||ke as an Input oran
3 App.Plant.R1.A2.SE1 |2000| — VM1 .
4 App.PlantR2.A1SE1 3doo Slot1.Bit2 — oo Output, or Analog or Discrete, etc.). All
5 Plant.R2.A2. lot1.Bi pee s R . L .
App PemR2AR A LELLE o - that information is unique to each
-e instance and should be part of that
iter_Cl

instance’s configuration.

In this scenario, an I/0 module would be a configurable reusable Function Block just like every other object we’ve
talked about in this chapter. It would have its own configuration for items like its name, CAN address, and such. It
would offer up its name and its 1/O points to an I/O Mapping Central Service which would then coordinate with
each equipment instance to make the connections specified in the equipment’s CSV configuration.

Alternatively, the 1/0 mapping could be specified in the CSV configuration for the I/O module FB instance.

In either scenario, the CODESY I/0O wouldn't be used at all. This gives the added benefit that 1/0 could now be
updated in an Online Change! Follow this link for a demo showing how this is done: https://ooip-
foundation.proboards.com/thread/9/configurable-mapping-allows-online-change

Future Enhancement

Auto Declare x In the future, IDE enhancements could be made to
seope time e integrate the features of the Central Configuration
R s + IDE Support for Service into the IDE. Thlsicould include additional .
Hags Comment reading, writing, and flags that designate a variable as a Parameter/Retain
E%m Puises per Liter transferring Config File Confi ti I/O Confi ti Aut ti
Oeerssrn onfiguration or an onfiguration. Automation
[QJconFIG
[JT0_CONFIG [prose]
5] s VO mappingand could be |ncI.uded to repl)lace t.he Vllsuallzatlon used to
Alarm configuration l read and write the configuration files, and
® RefrigeratorAssemlyLine.project - CODESYS via CSV file .
Fle Edt View Project [CC5 | Build E z = automation could be added to transfer the
e1=a=]) e e quees | configuration file back and forth between the PC (for
- { 1 3 App.Plant.R1.A2.SE1 2000 Slot1.Bit1 . .
: D Xfertorc i mpsemoarse w00 sewsee | €diting) and the PLC (for transferring the
Devices | XfertopLC | 5 AppPlantR2A2SE1 4000 Slot1Bit3

also open the file directly in Excel.

Note that functionality similar to the Central Configuration

configuration variable values to the runtime). It could

Services could be used to provide both a Central Alarm

Service and a Central I/O Service. In addition to simplifying the 1/0 mapping process, the Central I/O service would

provide the ability to reconfigure 1/0 in an Online Change (
using CODESYS in applications which cannot be shut down

which is currently not possible and a significant issue
for modification). These are examples of functionality

which is handled as an external manual post process in traditional PLC programming that could instead be built into

self-contained and self-reliant Function Blocks.

Chapter Eleven: Object Oriented Industrial Programming

= Simulation provides:

= insight which can’t be measured or observedin the actual plant or equipment

= the ability to determine the merits of alternate approaches and choose the option with the lowest
overall costor the bestoverall performance
the ability to test emergency and unusual conditions, which are impossible or dangerous to do with
the actual equipment
a high level of confidencein the design, which provides the corresponding confidence that any
issues encountered during commissioning must be in the plant or equipment
the ability to perfectthe control in parallel to the construction of the plant or equipment (and avoid
the inevitable pressure from the anxious project manager looking forthose who reside at the end of
the critical path to make up for delays earlier in the project)
= the ability to use the simulation modelas a plant operator training tool

= CODESYS provides the programming and simulation tools to design and test your entire

system prior to commissioning

= |n this author’s experience, 100% of the time, simulation has saved more time than it takes to
implement. Simulation typically adds 20% to the code development effort, which typically saves
50% in the qualification and commissioning effort.

= The vast majority ofthe thought process goes into building the control code. That thought process
can then be directly applied to the simulation code. And the simulation code does not need to meet
the same standards as the control code which will be deployedto the field.

= Simulation models are easily reused and easily modified for other applications

227

Plant-Level Simulation

To simulate, or not to simulate: that is the
question. ‘Tis nobler (or at least more
efficient) to spend the time to create
simulation models and test the design prior to
deployment, or to spend the time testing the
design during deployment?

While | can’t speak for Shakespeare, | can say
that in my 40-year career ‘tis always more
efficient to perfect the design prior to
deployment. I've successfully applied
simulation to a wide variety of applications

including many different types of industrial controls systems, electronic PCB circuit design, and FPGA design. In my
experience, simulation typically pays for itself many times over due to:
- the insight simulation models provide which can’t possibly be measured or observed in the actual plant or
equipment,
- the ability to quickly determine the merits of alternate approaches and choose the option with the lowest
overall cost or the best overall performance,
- the ability to test emergency and unusual conditions which are impossible or dangerous to do with the real
equipment,
- the high level of confidence in the design which provides the corresponding confidence that any issues
encountered during commissioning must be in the plant or equipment,
- the ability to perfect the control in parallel to the construction of the plant or equipment (and avoid the
inevitable pressure from the anxious project manager looking for those of us who reside at the end of the
critical path to make up for delays earlier in the project).

This return on investment becomes even greater with modern development and simulation environments which
include Object Oriented Industrial Programming (OOIP) tools to accelerate development, and advanced debugging
features which accelerate the time-to-insight.

The characteristics of a good Industrial Controls (IC) simulation environment look very similar to that of a good IC
development environment:
- Versatile and powerful programming languages
- Full featured language editors
- Full suite of debugging tools including:
Code and data breakpoints
- Single-stepping, step-in, step-out, etc.
Live Mode (to show instantaneous variable values, not just end of cycle values)
Write and Force variables, and move the execution point
- Virtual digital oscilloscope which samples at the controller cycle time
- Built-in HMI for creating test control panels
- A complete controller runtime which runs as a service on the development computer
- Support for Object Oriented Industrial Programming (OOIP)

Fortunately, the CODESYS IDE and the CODESYS ControlWin soft PLC offer all these features and is just as good as a
simulation/verification environment as it is a development environment. With such an environment, creating the
simulation code is as easy as creating the original code. The next few pages will show how this is accomplished
using the CODESYS IDE.

228 The Book of CODESYS

Simulation Code

= Totally independent of control code O g e
. @ oerice (cocesTS it WiV simulation
= Runs in a different task s code often
. B . i el mirrors the
ccepts Control Outputs to Equipment , S | control code.
= Drives Control Inputs from Equipment " e Here is the
=@ systemobjects simulation
= Removed from Build when control is deployed m;’j'mw“gj:g code for the
SimulationMain = (&4 Task Configuration .
PROGRAM SimulationMain = & MainTask container
m—— Sge handling
- o b L G ctem
o i, O e, 98 oo et M gescribed
" _ " _ = =] | earlierinthis
ConveyorSystem.E1 t:i.en;::ezgmm_xma; C stem.C1 MW%E C c2 ' Cmveyom_moeye ‘ Cha pte r. |t

contains the

same blocks
Conveyoflaﬁx“e_Sm 2 OHLoadiS;:mﬂe_Sm 4 OﬂLudiS;iﬂk_Sin as the control
L PhotoEy L PhotoEye L PhotoEye

c [} ic G oM = C Omg C COde, except
this is using
(R[+[Q] [wow @L‘ the

simulation
version of each system block (notice the *_Sim in the name). (This diagram was actually a copy of the actual
system-level diagram with the names changed.)

Notice that this author prefers the simulation code to be totally separate from the control code. It’s stored in its
own separate folder and it has its own separate Task. The Task is usually set to run much faster than control code,
because the simulator is usually simulating something that is running in real-time. It’s advisable to select a cycle
time that is not an even sub-multiple of the control cycle time, so there is no chance some sort of synchronizing or
aliasing could conceal a control issue. (For instance, selecting 3ms simulation for a 20ms control cycle.)

With the control code as a separate entity in its own folder, it’s a simple matter to exclude or include the folder in
the build to add or remove the simulation code. This way, when the simulation is not being used, it is completely
out of the way, it takes no controller resources, nor could it possibly ever interfere with the control code.

Some engineers prefer to place the simulation code in the control code and have a global variable to enable and
disable the simulator. This often reduces or eliminates the I/0 mapping step as described on the next page. But it
does use controller resources after the control code has been released to the field, and there is always the chance
the code could cause issues. There is no right answer with respect to the decision of where to place the simulation
code.

As was mentioned in the debugging chapter, one issue that occurs with simulation is what to do with the
configured physical I/O when simulating. This isn’t a problem when using Simulation built into the IDE because
Simulation ignores any configured 1/0. But in many cases Simulation has limitations which force the use of
ControlWin (which does not ignore 1/0). Some hardware vendors provide a version of ControlWin which accepts
and ignores the 1/0 from that vendor. That is the best solution when it is offered. Without that, the only way to
use ControlWin to simulate is to delete the /0 and change the device to ControlWin, then change the device back
to the actual device and paste the /0 back into the tree to run on the actual hardware with physical I/0.

Chapter Eleven: Object Oriented Industrial Programming 229

Simulation Model

Outputs from Equipment i 4 Inputs to Equipment | Pushingintothe
__ Wotor_Sm : = OffloadingModule_SIM
—{StartingTime Starter_Aux —{ connections.ConveyorMotor. Starter_Aux L—‘I —
[Connections.ConveyorMotor.Energize_Starter Energize_Starter ‘ ShOWS that the
T simulator for this
Conveyor_Sim i = H
[s Loadinghem e e module consists of two
—Conveyo:Length L—[Connections.ProductPE.PV_Input E] MOtor SimU|ato rS, a
—WidthOfitem .
hccereationtTime Conveyor simulator, and
MotorOn .
a Pusher simulator.
Pusher = Notice that the inputs to
Pusher_Sim = = .
MotorOn PusherExtended [Connections PusherExtendedPX PY_Input_ |~ the simulators are the
T#5s CycleTime PusherRetracted { C i PusherRetractedPX PV_Input = .
physical outputs of the
Pushblotor @) control code. The
Motor_Sim = =
—StartingTime Starter_Aux [C PusherMotor. Starter_Aux q inputs on the |eft are
[Connections.PusherMotor.Energize_Starter | Energize_Starter
full-path names to the
[True |—— Connections.ChuteFlapPX PV_Input Q physical OUtpUtS in the

control code, and the
simulator outputs on the right are the full path names to the control code inputs. These are the same full path
names that will be used when mapping the physical I/0 to the control code.

(Unfortunately, the naming convention was not used in this design. If it had been, the names on the left would be
appended with _FO and the ones on the right would be appended with “_FI”.)

The Motor_SIM accepts the Energize_Starter command and after Starting_Time has expired it sets the Starter_Aux
to true. Starting_Time can be changed by the simulator test sequence code to test the control code response when
the motor starts slower than expected or fails to start. These are a few rungs of LD.

The Conveyor_Sim records the time when the Loadingltem transitions to true, then knowing the length and speed
of the conveyor, activates the PhotoEye output when each item reaches the end of the conveyor. This requires a
dozen or so lines of ST code.

The Pusher_SIM cycles between activating the PusherExtended and PusherRetracted outputs to simulate an arm on
the end of a rotating cam with proximity switches on the two extremes. Another few lines of code.

In total, the entire Offloader simulator is a couple dozen or so lines of LD and ST code. A very small price to pay for
the confidence that the design is complete and correct before it is deployed to the field.

Be aware: To promote good coding techniques, variables that are declared as VAR are not accessible outside the
POU in which they are declared. Similarly, VAR_INPUTs and VAR_OUTPUTs declared inside a Function Block whose
instance is declared as a VAR are not accessible outside the POU in which the Function Block instance is declared.
CODESYS provides special access to the CODESY I/O Mapping tool (as well as to Visualization, Recipes, Trace, and
such) in order to be able to reach into variables inside Function Blocks that are declared as a VAR. Unfortunately,
your user-level simulator code will not have that same type of special access.

To allow your simulator code to “reach-into” and connect to VAR_INPUTs and VAR_OUTPUTs in instances of
Function Blocks, those instances must be declared as VAR_INPUT. (For instance, in this example the
ConveyorMotor Function Block instance must have been declared as VAR_INPUT.) (At one time it was possible to
use this syntax to allow a simulator to have the same access as I/0O mapping and Visualization:
“(ADR(VarToReach))*” (where VarToReach is a VAR_INPUT or VAR_OUTPUT inside an instance of a Function Block
that is declared VAR). But, as of this writing, that trick no longer works. Hopefully, it will again someday.)

230

Simulation Results

The Book of CODESYS

A Trace can be used to monitor the
results of the simulation. And/or the
simulation models themselves can
monitor for the expected behaviorin a
fully automated test system. In this
case, the traces show the handshaking
between each piece of equipment, the
outputs of the proximity sensors, the
inputs to the motors, and the status of
each conveyor simulator.

SelfTest! A
L85

OMB8 PusherExtendedPX Out

RunFullOut_NotRunTest RunFullOut_NotRunTest

SelfTest
p

X Transfer

The simulation can be

oM

OM7.

extended to include a full

OM|

o]
NumberBarrellsLoadedCnt
E1Cnt
cicnt

[Sefeegence

C2Cnt

C3Cnt
OL7Cnt|
NumberBarrellsOfficadedOM7

LoadTestResull

self-test of all the corner-
cases and unusual conditions
of the control code. This is

Emtpy TestResults —
OffloadLimitedTestResults =
ok itTai =

Seesconmocom

METHOD ControlAndCount

on is pushed
:=BarrellloadRate) ;

) GV=>EiCnt);

CICTU(CU:=C1EE, CV=>C1Cnt);
C2CTU (CU:=C2PE, CV=>C2Cnt);
C3CTU(CU:=C3PE, CV=>C3Cnt);

pressed

3, PT:=T#

rBarrellsLoadedCnt) ;

sed
:=0M7Barrel10f£lcadRate) ;

15, Q=>Transfer);

mer.Q AND 1

OMEOffloadTimer (IN:=NOT OMEOffloadTimer.Q, PT:=OMgBarrellOffloadRate):

PT:=T#1S

OMB0££10adPulse (I

number of barrells that vere

NumberBarrel1s0££10adedOM7CTU
cTU

1150££10adedOMT) ;
11s0£¢; :

extremely helpful for future
developers to test their
modifications and verify that
none of the existing
operations were disturbed by
the modifications.

In this example, when
RunFullOut_NotRunTest is
FALSE, the system enters the
self-test mode. In this test,

the sequence on the right is

executed which consists of multiple pairs of steps which first execute a test operation followed by the test
evaluation. As each test pair is completed, the results are outputted to the status signals on the lower-right side of
the SelfTest block.

Chapter Eleven: Object Oriented Industrial Programming

Other OOIP Resources

= Video showing an OOIP design, simulation, and configuration from a CSV file

= Forum with many OOIP examples and objects to share

= Video of OOIP examples (including machine control and process control)
= (beginning at time 1:25:50)

= Article in Control Engineering on OOIP

= Article in Control Engineering on Plant or Equipment-level Simulation

= Atrticle in Control Engineering on IEC61131-3 languages

231

Tool vendors are beginning to
make the benefits of OOIP
available to Controls Engineers.
To leverage those benefits,
Controls Engineers need only
master two key OOP concepts:
Encapsulation and Composition.
With that knowledge, controls
engineers can encapsulate the
functionality of physical objects
into matching control objects, and
then instantiate those objects to
create a control design which
mirrors the plant or machine

design. Not only does OOIP make the design easy to build, it also makes the design easy to troubleshoot for plant
technicians and easy to maintain for future controls engineers. Just as the best of other general software
advancements have been adopted into the industrial controls world, Object Oriented Industrial Programming is

following that same pattern. OOIP is clearly the future of Controls Engineering.

How do you know if your control system supports OOIP? Look for these capabilities:

- A means to create self-contained control objects which correspond to matching plant objects and carry out all
the functionality required for that plant object such as alarming, auditing, physical I/0, HMI 1/0, scaling,

control, etc.

A graphical editor allowing an unlimited number of instances of objects to be declared, instances of objects to

be interconnected in arbitrary fashions, and objects to instantiate other objects into a hierarchy of arbitrary
depth and complexity. During runtime, the editor should allow for simple navigation of the hierarchy such as
double-clicking on an instance of an object to descend into the project hierarchy and to navigate back.

- The ability to debug individual instances of objects during runtime, including: setting breakpoints within
individual instances, single-stepping into individual instances, and viewing/changing the private variables of an

instance of an object.

- A means for instances of the same objects to be differentiated by assigning unique values to the instance’s
configuration inputs anywhere the instance may be in the project hierarchy. Preferably, these configuration
values are sourced from a CSV/Excel file, SQL database, or via OPC UA. There must also be a way to search on
the values of these configuration variables during runtime (for instance, to search on an ISA tag name

configuration).

The ability to map physical I/O to any variable in any instance anywhere in the project hierarchy (including

mapping a physical input point to multiple instances). Composite I/0 such as from a fieldbus device must be

able to be mapped to individual variables, or to one or more data structure variables anywhere in the project
hierarchy. The tool must provide a way to trace the path of a signal from its input, through the logic, and to
the outputs it drives (likewise in reverse from the physical output back through the logic to the physical inputs
which influence that output).

The capability to build hierarchical HMI objects which match the hierarchical control objects and the ability to
interconnect the two objects (and their potentially thousands of underlying interconnections) via the top-level
object’s instance name.

The ability to print a “flattened” version of the hierarchical design showing the interconnections between the
object instances and the unique configuration values on each instance.

- The ability to implement Inheritance, Methods, Polymorphism, and Interfaces can be helpful.

- An active user community and lively forum where open-source Plant Objects and advice can be freely shared.

